

Mimetic Discrete Models with Weak Material Laws, or Least Squares Principles Revisited.

Pavel Bochev

Computational Mathematics and Algorithms
Sandia National Laboratories

Workshop on Compatible Discretizations, CAM, Oslo, 2005

Supported in part by

Part I Mimetic Methods

- 1. What is a mimetic discretization
- 2. An algebraic topology framework
- 3. Direct and conforming discretizations

Mixed, Galerkin and Least-Squares methods for 2nd order problems share a common ancestor: the 4-field principle

A new interpretation of Least Squares: Realizations of a weak discrete Hodge * operator

A prelude: Least-Squares Principles

What are least-squares and the reasons to use them

LS acquire surprising new properties when elements from mixed methods are used

For diffusion problems they give

- the same scalar as Galerkin method
- the same flux as in the mixed method

Mac Hyman, Misha Shashkov

T-7
Los Alamos National Laboratory

Part II Compatibility matters!

The Plan

Mimetic LSP for eddy currents and diffusion/heat equations and their advantages over nodal LS.

Max Gunzburger

CSIT

Florida State University

A Prelude

Least-squares 101

$$\mathcal{L}u = f \text{ in } \Omega$$

$$\mathcal{R}u = h \text{ on } \Gamma$$

$$\min_{u \in X} J(u; f, h) = \frac{1}{2} \left(\left\| \mathcal{L}u - f \right\|_{X,\Omega}^{2} + \left\| \mathcal{R}u - h \right\|_{Y,\Gamma}^{2} \right)$$

$$\left(\mathcal{L}u, \mathcal{L}v \right)_{\Omega} + \left(\mathcal{R}u, \mathcal{R}v \right)_{\Gamma} = \left(f, \mathcal{L}u \right)_{\Omega} + \left(h, \mathcal{R}v \right)_{\Gamma}$$

$$\mathbf{A}\mathbf{u} = \mathbf{b}$$

Top 3 reasons people

want to do least squares:

- **[☉]** Using C⁰ nodal elements
- Avoiding inf-sup conditions
- © Solving SPD systems

don't want to do least squares:

- **⊗** Conservation
- **⊗** Conservation
- **⊗** Conservation

We will show that:

- ➤ Using **nodal elements** is not necessarily the best choice in LSFEM, and so it is arguably the **least-important advantage** attributed to least-squares methods
- > By using other elements least-squares acquire additional conservation properties
- > Surprisingly, this kind of least-squares turns out to be **related** to **mixed methods**

Introduced by Jespersen (1977), Fix, Gunzburger and Nicolaides (1977-85). See also Cai, Carey, Chang, Jiang, Lazarov, Manteuffel et al. (1994-2000) and the survey B. & Gunzburger in SIAM Review, 1998

Least-squares for diffusion

$$\nabla \cdot \mathbf{u} + \gamma \phi = f$$

$$\mathbf{u} + \nabla \phi = 0$$

$$\Leftrightarrow J(\mathbf{u}, \phi; f) = \frac{1}{2} (\|\nabla \cdot \mathbf{u} + \gamma \phi - f\|_{0}^{2} + \|\mathbf{u} + \nabla \phi\|_{0}^{2}) = 0$$

$$-\nabla \cdot \nabla \phi + \gamma \phi = f$$

$$-\nabla \cdot \nabla \phi + \gamma \phi = f \qquad \qquad \lim_{\mathbf{v} \in H_N(\Omega, div); \psi \in H_D^1(\Omega)} J(\mathbf{v}, \psi; f)$$

$$(\nabla \cdot \mathbf{u} + \gamma \phi, \nabla \cdot \mathbf{v}) + (\mathbf{u} + \nabla \phi, \mathbf{v}) = (f, \nabla \cdot \mathbf{v}) \quad \forall \mathbf{v} \in H_N(\Omega, \mathsf{div})$$

$$(\nabla \cdot \mathbf{u} + \gamma \phi, \gamma \psi) + (\mathbf{u} + \nabla \phi, \nabla \psi) = (f, \gamma \psi) \qquad \forall \psi \in H_D(\Omega, \mathsf{grad})$$

"Artificial" energy norm

 $J(\mathbf{u},\phi;0) = \frac{1}{2} \left(\left\| \nabla \cdot \mathbf{u} + \gamma \phi \right\|_{0}^{2} + \left\| \mathbf{u} + \nabla \phi \right\|_{0}^{2} \right) = \left\| \left(\mathbf{u},\phi \right) \right\|_{2}^{2}$

Norm equivalence

$$C_1(\|\mathbf{u}\|_{div}^2 + \|\phi\|_1^2) \le \|\|(\mathbf{u},\phi)\|\|^2 \le C_2(\|\mathbf{u}\|_{div}^2 + \|\phi\|_1^2)$$

Inner-product equivalence

$$Q_{LS}(\mathbf{u}, \phi; \mathbf{v}, \psi) = (\nabla \cdot \mathbf{u} + \gamma \phi, \nabla \cdot \mathbf{v} + \gamma \psi) + (\mathbf{u} + \nabla \phi, \mathbf{v} + \nabla \psi)$$

Stability

$$C_1\left(\left\|\mathbf{u}\right\|_{div}^2 + \left\|\phi\right\|_1^2\right) \le Q_{LS}\left(\mathbf{u}, \phi; \mathbf{u}, \phi\right) \qquad \leftarrow \qquad \text{coercivity}$$

continuity
$$\rightarrow Q_{LS}(\mathbf{u}, \phi; \mathbf{v}, \psi) \leq C_2 (\|\mathbf{u}\|_{div}^2 + \|\phi\|_1^2)^{1/2} (\|\mathbf{v}\|_{div}^2 + \|\psi\|_1^2)^{1/2}$$

In the dark ages least-squares were deemed immune to compatibility

Discrete equations

$$Q_{LS}(\mathbf{u}_h, \phi_h; \mathbf{v}_h, \psi_h) = (f, \nabla \cdot \mathbf{v}_h + \gamma \psi_h) \quad \forall (\mathbf{v}_h, \psi_h) \in \mathbf{V}_h \times S_h$$

Coercivity is inherited on all closed subspaces, and so any

$$\mathbf{V}_h \subset H(\Omega, div)$$
 & $S_h \subset H^1(\Omega)$ (including \mathbb{C}^0)

are sufficient for stability of LSFEM and quasi-optimal energy norm error estimates

This was deemed to be a "get out of jail" card needed to throw away compatibility

⇒ all variables "can" be approximated by the same, equal order C⁰ spaces

$$\underbrace{\left\|\mathbf{u} - \mathbf{u}_{h}\right\|_{div} + \left\|\phi - \phi_{h}\right\|_{1}}_{\text{energy norm}} \leq C \inf_{\left(\mathbf{v}_{h}, \psi_{h}\right) \in \mathbf{V}_{h} \times S_{h}} \left\|\mathbf{u} - \mathbf{v}_{h}\right\|_{div} + \left\|\phi - \phi_{h}\right\|_{1}$$

$$\left\|\phi - \phi_h\right\|_0 \le Ch \left\|\phi - \phi_h\right\|_1$$

← Using duality

There was a little problem...

For LSP: conformity \Rightarrow stability but conformity \neq optimal L² accuracy!

 $\mathbf{V}_h \subset H(\Omega, div)$ & $S_h \subset H^1(\Omega)$ is insufficient for optimal L² convergence of $\mathbf{v}_h!$

LS vs BA	scalar		vector	
	L ²	H¹	L ²	H(div)
P1	2.00	1.00	1.38	0.99
ВА	2.00	1.00	2.00	1.00
P2	3.00	2.00	2.02	2.00
ВА	3.00	2.00	3.00	2.00

Optimal convergence of v_h in L² has been achieved in 2 ways

(Carey et al, Jiang, Manteuffel et al. 1994-1997)

By using an augmented LS principle

Idea

$$\mathbf{u} + \nabla \phi = 0 \implies \nabla \times \mathbf{u} = 0$$

Augmented PDE

$$\begin{cases}
\nabla \cdot \mathbf{u} + \gamma \phi = f \\
\mathbf{u} + \nabla \phi = 0
\end{cases} & & \nabla \times \mathbf{u} = 0 \text{ in } \Omega; \quad \phi = 0 \text{ on } \Gamma_D; \mathbf{u} \cdot \mathbf{n} = 0 \text{ on } \Gamma_N$$

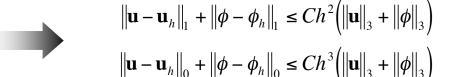
Functional

$$J(\mathbf{u},\phi;f) = \frac{1}{2} \left(\left\| \nabla \cdot \mathbf{u} + \gamma \phi - f \right\|_{0}^{2} + \left\| \mathbf{u} + \nabla \phi \right\|_{0}^{2} + \left\| \nabla \times \mathbf{u} \right\|_{0}^{2} \right)$$

Norm equivalence

$$C_1(\|\mathbf{u}\|_1^2 + \|\phi\|_1^2) \le \|\mathbf{u}, \phi\|_1 \le C_2(\|\mathbf{u}\|_1^2 + \|\phi\|_1^2)$$

Error estimate (P2)



The trouble with this approach

The range of the solution operator is restricted to a "smoother" space, causing the least-squares principle to miss less regular solutions that are admissible for the original PDE! We will see an example of this problem.

Or, by using a special grid

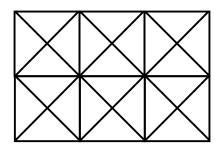
The Grid Decomposition Property (GDP)

$$\begin{cases} \mathbf{v}_{h} = \mathbf{w}_{h} + \mathbf{z}_{h} \\ \nabla \cdot \mathbf{z}_{h} = 0 \end{cases}$$

$$\forall \mathbf{v}_{h} \in V_{h}$$

$$\begin{cases} (\mathbf{w}_{h}, \mathbf{z}_{h}) = 0 \\ \|\mathbf{w}_{h}\|_{0} \leq C(\|\nabla \cdot \mathbf{v}_{h}\|_{-1} + h\|\nabla \cdot \mathbf{v}_{h}\|_{0}) \end{cases}$$

Fix. Gunzburger, Nicolaides, 1976



The (only known) Co example

Theorem

GDP is necessary and sufficient for stable and optimally accurate mixed discretization of the Least-Squares Principle (and the Mixed Method)

Fix, Gunzburger, Nicolaides, Comp. Math with Appl. 5, pp.87-98, 1979

Using the criss-cross grid and
$$S_h = \nabla \cdot V_h$$
:

$$\|\mathbf{u} - \mathbf{u}_h\|_{div} + \|\phi - \phi_h\|_{1} \le Ch^{1}(\|\mathbf{u}\|_{2} + \|\phi\|_{2})$$

$$\|\mathbf{u} - \mathbf{u}_h\|_{0} + \|\phi - \phi_h\|_{0} \le Ch^{2}(\|\mathbf{u}\|_{2} + \|\phi\|_{2})$$

The mixed Galerkin connection

Lemma

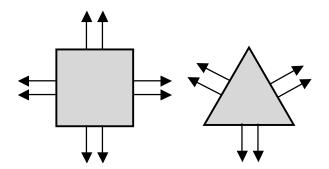
(Bochev, Gunzburger, SINUM 2005)

 (V_h, S_h) satisfies the inf-sup condition $\Rightarrow V_h$ verifies GDP

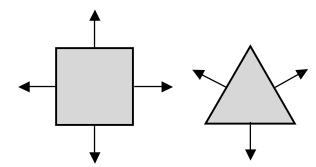
There are plenty of spaces that verify GDP

Except that they are **not C**⁰ (nodal)!

BDM(k) spaces k≥1



RT(k) spaces k≥0



"Well-done" (mimetic) least-squares

Using nodal C⁰ elements for all variables is not the best choice!

(despite of what some people tell you!)

Instead, pose the discrete LSP $\min_{\mathbf{v}_h \in D^h; \psi_h \in G^h} J(\mathbf{v}_h, \psi_h; f)$ on this pair of spaces:

$$D^h \subset H_N(\Omega, \operatorname{div}) \longrightarrow \operatorname{any} \operatorname{with} \operatorname{GDP}$$

$$G^h \subset H^1_D(\Omega, \operatorname{grad}) \rightarrow \operatorname{any} \operatorname{that} \operatorname{is} C^0$$

Theorem. For proof see Bochev, Gunzburger, SIAM J. NUM. ANAL. 2005

For $\phi_h \in P_k$ and $\mathbf{u}_h \in BDM_k$:	For $\phi_h \in P_k$ and $\mathbf{u}_h \in RT_k$:
$\left\ \boldsymbol{\phi} - \boldsymbol{\phi}_h \right\ _0 + \left\ \mathbf{u} - \mathbf{u}_h \right\ _0 = O(h^{k+1})$	$\left\ \phi - \phi_h\right\ _0 + \left\ \mathbf{u} - \mathbf{u}_h\right\ _0 = O(h^k)$
$\left\ \boldsymbol{\phi} - \boldsymbol{\phi}_h \right\ _1 + \left\ \mathbf{u} - \mathbf{u}_h \right\ _{div} = O(h^k)$	$\left\ \boldsymbol{\phi} - \boldsymbol{\phi}_h \right\ _1 + \left\ \mathbf{u} - \mathbf{u}_h \right\ _{div} = O(h^k)$

Velocity and pressure spaces need not form a stable mixed pair!

Theorem

Assume that $\left(\phi^{h},\mathbf{u}^{h}\right)$ solves the minimization problem

$$\min_{\boldsymbol{\phi}^h \in G^h : \mathbf{u}^h \in D^h} \tilde{K}(\boldsymbol{\phi}^h, \mathbf{u}^h) = \frac{1}{2} \left(\left\| \mathbf{A}^{-1/2} (\mathbf{u}^h + \mathbf{A} \nabla \boldsymbol{\phi}^h) \right\|_0^2 + \left\| \boldsymbol{\gamma}^{-1/2} (\nabla \cdot \mathbf{u}^h + \boldsymbol{\gamma} \boldsymbol{\phi}^h - f) \right\|_0^2 \right)$$

if $\gamma>0$, $\left(\phi^{h},\mathbf{u}^{h}\right)$ is **conservative** in the sense that there exists $\mathbf{w}^{h}\in C^{h}$; $\psi^{h}\in Q^{h}$ such that

$$\triangleright (\phi^h, \mathbf{w}^h) \in G^h \times C^h$$
 solves the Ritz-Galerkin method and $\nabla \phi^h + \mathbf{w}^h = 0$

$$\blacktriangleright (\psi^h, \mathbf{u}^h) \in Q^h \times D^h$$
 solves the Mixed Galerkin method and $\nabla \cdot \mathbf{u}^h + \gamma \psi^h = \Pi^h f$

In other words, the mimetic least-squares method computes

The same scalar approximation as in the Ritz-Galerkin method
The same vector approximation as in the Mixed Galerkin method

Mimetic LS = Galerkin + Mixed Galerkin

error	grid	16	32	64	128
L2 u	Mimetic LS	0.1514803E+00	0.7192623E-01	0.3523105E-01	0.1745720E-01
LZ U	Mixed	0.1514803E+00	0.7192623E-01	0.3523105E-01	0.1745720E-01
H(dist)	Mimetic LS	0.2869324E+01	0.1397179E+01	0.6894290E+00	0.3426716E+00
H(div)	Mixed	0.2869324E+01	0.1397179E+01	0.6894290E+00	0.3426716E+00
L2 φ N	Galerkin	0.3997943E-02	0.9378368E-03	0.2274961E-03	0.5621838E-04
	Mimetic LS	0.3997943E-02	0.9378368E-03	0.2274961E-03	0.5621838E-04
	Mixed	0.3679584E-01	0.1778803E-01	0.8750616E-02	0.4340574E-02
H1 φ	Mimetic LS	0.2671283E+00	0.1296329E+00	0.6383042E-01	0.3166902E-01
	Galerkin	0.2671283E+00	0.1296329E+00	0.6383042E-01	0.3166902E-01

Scalar: L2 and H1 errors of Mimetic LS and Galerkin identical

Vector: L2 and H(div) errors of Mimetic LS and Mixed Galerkin identical

A \$64K Question

We see that a Least Squares perform better when using

nodal C⁰ space for the scalar (same as in the Galerkin FEM)

- H(div) conforming space for the **vector** (same as in the **Mixed Galerkin** FEM)

Q: what are the fundamental reasons for the method to acquire these new and attractive properties?

To answer this question we will use algebraic topology to develop a framework for compatible PDE discretizations. Then, we will examine different discrete models arising from this framework.

Part 1

Algebraic topology provides the tools to mimic the PDE structure

- Computational grid is algebraic topological complex
- k-forms are encoded as k-cell quantities (k-cochains)
- Derivative is provided by the coboundary
- Inner product induces combinatorial Hodge theory
- Singular cohomology preserved by the complex

Framework for mimetic discretizations (Bochev, Hyman, IMA Proceedings)

Translation:
 Fields → forms → cochains

Basic mappings: reduction and reconstruction

Combinatorial operations: induced by reduction map

Natural operations: induced by reconstruction map

Derived operations: induced by natural operations

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Nicolaides (1993), Dezin (1995), Shashkov (1990-), Mattiussi (1997), Schwalm (1999), Teixeira (2001), Marsden et al (DEC) and many others...

Differential Forms

Smooth differential forms $\Lambda^k(\Omega)$: $x \to \omega(x) \in \Lambda^k(T_x\Omega)$

DeRham complex $\mathbf{R} \to \Lambda^0 \xrightarrow{d} \Lambda^1 \xrightarrow{d} \Lambda^2 \xrightarrow{d} \Lambda^3 \to 0$

Metric conjugation $*: \Lambda^k(T_x\Omega) \to \Lambda^{n-k}(T_x\Omega) \Leftrightarrow \omega \wedge *\xi = (\omega,\xi)_x \omega_n$

L² inner product on $\Lambda^k(\Omega)$ $(\omega,\xi)_{\Omega} = \int_{\Omega} (\omega,\xi)_{x} \omega_{n} \Rightarrow (\omega,\xi)_{\Omega} = \int_{\Omega} \omega \wedge *\xi$

Codifferential $d^*: \Lambda^{k+1}(\Omega) \to \Lambda^{k+1}(\Omega) \Leftrightarrow (d\omega, \xi)_{\Omega} = (\omega, d^*\xi)_{\Omega}$

Hodge Laplacian $\Delta : \Lambda^k(\Omega) \to \Lambda^k(\Omega)$ $\to \Delta = dd^* + d^*d$

Completion of $\Lambda^k(\Omega)$ $\Lambda^k(L^2,\Omega)$

Sobolev spaces $\Lambda^k (d,\Omega) = \left\{ \omega \in \Lambda^k (L^2,\Omega) \mid d\omega \in \Lambda^{k+1} (L^2,\Omega) \right\}$

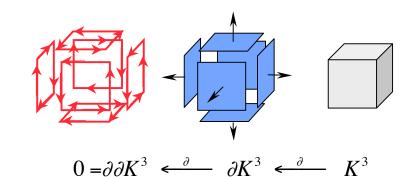
Chains and cochains

Computational grid = Chain complex

$$\partial: C_k \to C_{k-1}$$

$$\partial \partial = 0$$
 $C_0 \stackrel{\partial}{\longleftarrow} C_0$

$$\partial \partial = 0$$
 $C_0 \leftarrow \frac{\partial}{\partial C_1} \leftarrow \frac{\partial}{\partial C_2} \leftarrow \frac{\partial}{\partial C_3} \leftarrow C_3$



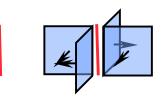
Field representation = Cochain complex

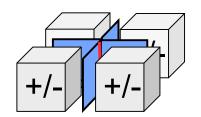
$$C^{k} = L(C_{k}, \mathbf{R}) = C_{k}^{*} \qquad \langle \sigma^{i}, \sigma_{j} \rangle = \delta_{ij}$$

$$\delta: C^k \to C^{k+1} \qquad \langle \omega, \partial \eta \rangle = \langle \delta \omega, \eta \rangle$$

$$\delta\delta = 0 \qquad C^0 \xrightarrow{\delta} C^1 \xrightarrow{\delta} C^2 \xrightarrow{\delta} C^3$$

$$K^1 \xrightarrow{\delta} \delta K^1 \xrightarrow{\delta} \delta \delta K^1 = 0$$





Basic mappings

Reduction

$$\mathcal{R}: \Lambda^k(L^2,\Omega) \to C^k$$

Natural choice

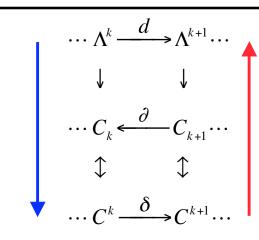
$$\langle \mathcal{R}\omega, \sigma \rangle = \int_{\sigma} \omega$$
DeRham map

$$\mathcal{R}d = \delta \mathcal{R}$$

Proof

$$\langle \delta \mathcal{R} \omega, c \rangle = \langle \mathcal{R} \omega, \partial c \rangle =$$

$$\int_{\partial c} \omega = \int_{c} d\omega = \langle \mathcal{R} d\omega, c \rangle$$



$$\Lambda^{k} \xrightarrow{d} \Lambda^{k+1} \qquad \Lambda^{k} \xrightarrow{d} \Lambda^{k+1}$$

$$\mathcal{R} \downarrow \text{CDPI} \downarrow \mathcal{R} \qquad \mathcal{I} \downarrow \text{CDP2} \downarrow \mathcal{I}$$

$$C^{k} \xrightarrow{\delta} C^{k+1} \qquad C^{k} \xrightarrow{\delta} C^{k+1}$$
natural required

Range $\mathcal{IR} = \Lambda^k (L^2, K) \subset \Lambda^k (L^2, \Omega)$ Range $\mathcal{IR} = \Lambda^k (d, K) \subset \Lambda^k (d, \Omega)$

Reconstruction

$$\mathcal{I}:C^k\to\Lambda^k\big(L^2,\Omega\big)$$

No natural choice

$$\mathcal{RI} = id$$

$$\mathcal{IR} = id + O(h^s)$$

$$\ker \mathcal{I} = 0$$

Conforming

$$\mathcal{I}: C^k \to \Lambda^k (d, \Omega)$$

$$\mathcal{I}d = \delta \mathcal{I}$$

Combinatorial operations

Discrete derivative

Forms are dual to manifolds

$$\langle d\omega, \Omega \rangle = \langle \omega, \partial \Omega \rangle$$

Cochains are dual to **chains**

$$\langle \delta a, \sigma \rangle = \langle a, \partial \sigma \rangle$$

δ approximates d on cochains

Discrete integral

$$\int_{\sigma} a = \langle a, \sigma \rangle$$

Stokes theorem

$$\langle \delta a, \sigma \rangle = \langle a, \partial \sigma \rangle$$

Natural and derived operations

Natural Inner product

$$(a,b)_x = (\mathcal{I}a,\mathcal{I}b)_x$$

$$(a,b)_x = (\mathcal{I}a,\mathcal{I}b)_x$$
 $(a,b)_\Omega = \int_\Omega (a,b)_x \omega_n = (\mathcal{I}a,\mathcal{I}b)_\Omega$

Wedge product

$$\wedge: C^k \times C^l \mapsto C^{k+l} \qquad a \wedge b = \mathcal{R}(\mathcal{I} a \wedge \mathcal{I} b)$$

$$a \wedge b = \mathcal{R}(\mathcal{I}a \wedge \mathcal{I}b)$$

Derived Adjoint derivative

$$\delta^*: C^{k+1} \mapsto C^k$$

$$\left(\delta^* a, b\right)_{\Omega} = \left(a, \delta b\right)_{\Omega}$$

Provides a second set of grad, div and curl operators. Scalars encoded as 0 or 3-forms, vectors as 1 or 2-forms, derivative choice depends on encoding.

Discrete Laplacian

$$D: C^k \mapsto C^k$$

$$D = \delta^* \delta + \delta \delta^*$$

Derived operations are necessary to avoid internal inconsistencies between the discrete operations: 1 is only approximate inverse of $\mathcal R$ and natural operations will clash

Example Natural adjoint

$$d^* = (-1)^k * d *$$
 $\delta^* = (-1)^k \mathcal{R} * d * \mathcal{I}$

I must be regular and $(\delta^* a, b)_{\Omega} = (a, \delta b)_{\Omega} + O(h^s) \Rightarrow \delta^*$ not true adjoint

Mimetic properties (I)

Discrete Poincare lemma (existence of potentials in contractible domains)

$$d\omega_k = 0 \implies \omega_k = d\omega_{k+1}$$

$$\delta c^k = 0 \implies c^k = \delta c^{k+1}$$

Discrete Stokes Theorem

$$\langle d\omega_{k-1}, c_k \rangle = \langle \omega_{k-1}, \partial c_k \rangle$$

$$\langle \delta c^{k-1}, c_k \rangle = \langle c^{k-1}, \partial c_k \rangle$$

Discrete "Vector Calculus"

$$dd = 0$$

$$\delta\delta = \delta * \delta * = 0$$

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$$

$$a \wedge b = (-1)^{kl} b \wedge a$$

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$

$$\delta(a \wedge b) = \delta a \wedge b + (-1)^k a \wedge \delta b$$

(Regular 1)

Features of the continuum system that is implied by differential forms calculus is inherited by the discrete model

Called *mimetic* property by Hyman and Scovel (1988)

Mimetic properties (II)

Inner product induces combinatorial Hodge theory on cochains

Co-cycles of
$$(\Lambda^0, \Lambda^1, \Lambda^2, \Lambda^3)$$
 $\xrightarrow{\mathcal{R}}$ co-cycles of (C^0, C^1, C^2, C^3) $d\omega = 0$ \Rightarrow $\delta \mathcal{R} \omega = 0$

Discrete Harmonic forms

$$H^{k}(\Omega) = \left\{ \eta \in \Lambda^{k}(\Omega) \mid d\eta = d^{*}\eta = 0 \right\}$$

$$H^{k}(K) = \left\{ c^{k} \in C^{k} \mid \delta c^{k} = \delta^{*}c^{k} = 0 \right\}$$

$$H^{k}(K) = \left\{ c^{k} \in C^{k} \mid \delta c^{k} = \delta^{*} c^{k} = 0 \right\}$$

Discrete Hodge decomposition

$$\omega = d\rho + \eta + d^*\sigma$$

Theorem

$$\dim \ker(\Delta) = \dim \ker(D)$$

Remarkable property of the mimetic *D* - kernel size is a **topological invariant!**

Discrete * operation

Natural definition (Bossavit)

$$*_{N}: C^{k} \mapsto C^{n-k} \qquad *_{N} = \mathcal{R} * \mathcal{I}$$

$$*_{_{N}} = \mathcal{R} * \mathcal{I}$$

Derived definition (Hiptmair)

$$*_D: C^k \mapsto C^{n-k}$$

$$\int_{\Omega} a \wedge *_{D} b = (a,b)_{\Omega}$$

$$\int_{\Omega} a \wedge *_{D} b = (a,b)_{\Omega} \quad \text{mimics} \quad (\omega,\xi)_{\Omega} = \int_{\Omega} \omega \wedge *\xi$$

Theorem

$$*_{N}\mathcal{R}\omega^{h} = \mathcal{R}*\omega^{h} \quad \forall \omega^{h} \in \text{Range}(\mathcal{I}\mathcal{R})$$

CDP on the range

$$\int_{\Omega} \mathcal{I} \mathcal{R} \big(\mathcal{I} a \wedge \mathcal{I} *_{D} b \big) = \int_{\Omega} \big(\mathcal{I} a \wedge * \mathcal{I} b \big)$$

Weak CDP

$$\int_{\Omega} b \wedge *_{N} b = (a,b)_{\Omega} + O(h^{s})$$

$$*_N = *_D + O(h^s)$$

The trouble with the discrete *

Action of * must be coordinated with the other discrete operations

	(•,•)	۸	δ^*	Ŕ	1
*N	_			✓	
* _D	1	√			_

Analytic * is a local, invertible operation ⇒ positive diagonal matrix

$$\dim C^k \neq \dim C^{n-k} \implies *_N: C^k \mapsto C^{n-k}$$
 cannot be a square matrix!

Construction of * is nontrivial task unless a primal-dual grid is used!

Implications

A consistent discrete framework requires a choice of a primary operation either * or (·,·) but not both

A discrete * is the primary concept in Hiptmair (2000), Bossavit (1999)

- Inner product derived from discrete *
- discrete * used in explicit discretization of material laws

The **natural inner product** is the primary operation in our approach

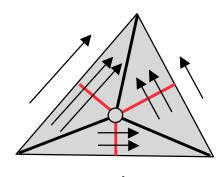
- Sufficient to give rise to combinatorial Hodge theory on cochains
- Easier to define than a discrete * operation
- Incorporate material laws in the natural inner product, or
- Enforce material laws weakly (justified by their approximate nature)

Algebraic equivalents

Operation	Matrix form	type	
δ	\mathbf{D}_{k}	{-1,0,1}	
(\cdot,\cdot)	\mathbf{M}_{k}	SPD	
a ₁ ∧b ₁	$\sum \mathbf{W}_{11}$	Skew symm.	
a₁∧b₂	$\sum \mathbf{W}_{12}$	$W_{12}^{T} = W_{21}$	
b ₂ ∧a ₁	$\sum \mathbf{W}_{21}$		
δ*	$\mathbf{M}_{k}^{-1} \mathbf{D}_{k}^{T} \mathbf{M}_{k+1}$	rectangular	
Ф	$\mathbf{M}_{k}^{-1} \mathbf{D}_{k}^{T} \mathbf{M}_{k+1} \mathbf{D}_{k}^{T} + \mathbf{D}_{k-1} \mathbf{M}_{k-1}^{-1} \mathbf{D}_{k-1}^{T} \mathbf{M}_{k}$	square	
* _D	$W_{12}(*_Da)=M_3a$	pair	

Reconstruction and natural inner products

Co-volume



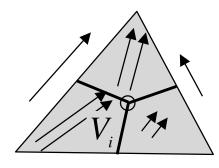
 \mathcal{I}

Nicolaides, Trapp (1992-04)

$egin{pmatrix} h_1h_1^\perp & & & \ & h_2h_2^\perp & & \ & & h_3h_3^\perp \end{pmatrix}$

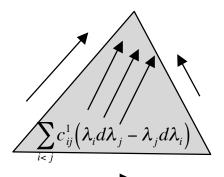
 δ^* local

Mimetic



Hyman, Shashkov, Steinberg (1985-04)

Whitney



Dodzuik (1976) Hyman, Scovel (1988)

$$\omega_{ij}^{1} = \lambda_{i} d\lambda_{j} - \lambda_{j} d\lambda_{i}$$

$$\ldots \qquad \ldots$$

$$\ldots \qquad (w, w, \lambda)$$

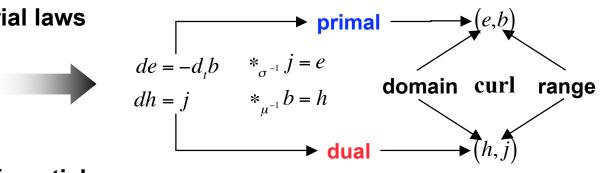
non-local

Mimetic discretization of magnetic diffusion: translation to forms

1st order PDE with material laws

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \mathbf{J} = \sigma \mathbf{E}$$

$$\nabla \times \mathbf{H} = \mathbf{J} \quad \mathbf{B} = \mu \mathbf{H}$$

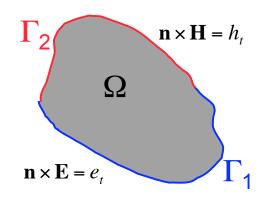


1st order PDE with codifferentials

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\frac{1}{\sigma} \nabla \times \frac{1}{\mu} \mathbf{B} = \mathbf{E}$$

$$de = -d_t b$$

$$e = *_{\sigma^{-1}} d *_{\mu^{-1}} b$$



2nd order PDE

$$\nabla \times \frac{1}{\sigma} \nabla \times \frac{1}{\mu} \mathbf{B} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$d *_{\sigma^{-1}} d *_{\mu^{-1}} b = -d_t b$$

NOTE: we could have eliminated the primal pair (E,B) and obtain the last two equations in terms of the dual pair (H,J).

Option (I): Material properties via codifferentials

$$\delta \delta^* b^2 = -\delta_t b^2$$

$$e^1 \in C^1$$
; $b^2 \in C^2$

$$\delta e^1 = -\delta_t b^2$$

$$e^1 = \delta^* b^2$$

$$d *_{\sigma^{-1}} d *_{u^{-1}} b = -d_t b$$

Direct Conforming

$$de = -d_t b$$

$$e = *_{\sigma^{-1}} d *_{\mu^{-1}} b$$

$$\left(db_h^2, d\hat{b}_h^2\right)_{\Omega} = \left(-d_t b_h^2, \hat{b}_h^2\right)_{\Omega}$$

$$e_h^1 \in \Lambda^1(d,K); \quad b_h^2 \in \Lambda^2(d,K)$$

$$de_h^1 = -d_t b_h^2$$

$$\left(e_h^1, \hat{e}_h^1\right)_{\Omega} = \left(b_h^2, d\hat{e}_h^1\right)_{\Omega}$$

Theorem (Bochev & Hyman)

Assume that 1 is **conforming** reconstruction operator. Then, the **direct** and the **conforming** mimetic methods are completely equivalent.

Option (II) Mimetic models with weak material laws

Translate 1st order system to an equivalent 4-field constrained optimization problem

$$de = -d_t b \quad *_{\sigma^{-1}} j = e$$

$$dh = j \quad *_{u^{-1}} b = h$$

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(*_{\sigma^{-1}} j - e \right) \right\|^2 + \left\| \sqrt{\mu} \left(*_{\mu^{-1}} b - h \right) \right\|^2 \right)$$
subject to $de = -d_t b$ and $dh = j$

Discretize in time

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(*_{\sigma^{-1}} j - e \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(*_{\mu^{-1}} b - h \right) \right\|^2 \right) \quad \text{subject to} \quad de = -\gamma \left(b - \overline{b} \right) \quad \text{and} \quad dh = j$$

Discretize in space (fully mimetic)

$$\begin{split} &\min\frac{1}{2}\Big(\Big\|\sqrt{\sigma}\big(\sigma^{-1}j_h^2-e_h^1\big)\Big\|^2+\Big\|\sqrt{\mu\gamma}\big(\mu^{-1}b_h^2-h_h^1\big)\Big\|^2\Big)\\ &\text{subject to}\quad de_h^1=-\gamma\big(b_h^2-\overline{b}_h^{\;2}\big) \text{ and } dh_h^1=j_h^2 \end{split}$$

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} j^2 - e^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(\mu^{-1} b^2 - h^1 \right) \right\|^2 \right)$$
 subject to $\delta e^1 = -\gamma \left(b^2 - \overline{b}^2 \right)$ and $\delta h^1 = j^2$

Conforming

Direct

Advantages

- Does not require a primal-dual grid complex
 Explicit discretization of material laws is avoided
 Construction of a discrete * operation not required

So, where are the least-squares? (An answer to the \$64K Question)

We start from the (fully) mimetic discrete 4-field principle

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} j_h^2 - e_h^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(\mu^{-1} b_h^2 - h_h^1 \right) \right\|^2 \right) \quad \text{subject to} \quad de_h^1 = -\gamma \left(b_h^2 - \overline{b}_h^2 \right) \quad \text{and} \quad dh_h^1 = j_h^2$$

But, instead of using Lagrange multipliers we note that constraints can be satisfied **exactly**. \Rightarrow we can **eliminate** the variables in the **ranges** of the differential operators:

$$de_{h}^{1} = -\gamma \left(b_{h}^{2} - \overline{b}_{h}^{2}\right) \implies b_{h}^{2} = \overline{b}_{h}^{2} - \gamma^{-1} de_{h}^{1} \implies \mu^{-1} b_{h}^{2} - h_{h}^{1} = \mu^{-1} \overline{b}_{h}^{2} - (\mu \gamma)^{-1} de_{h}^{1} - h_{h}^{1}$$

$$dh_{h}^{1} = j_{h}^{2} \implies j_{h}^{2} = dh_{h}^{1} \implies \sigma^{-1} j_{h}^{2} - e_{h}^{1} = \sigma^{-1} dh_{h}^{1} - e_{h}^{1}$$

The constrained 4 field principle reduces to the unconstrained (least-squares) problem

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} dh_h^1 - e_h^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left((\mu \gamma)^{-1} de_h^1 + h_h^1 - \mu^{-1} \overline{b}_h^2 \right) \right\|^2 \right)$$

⇒ a Mimetic LSP is equivalent to a fully compatible discretization of the 4-field principle

Where are the mixed methods?

A fully mimetic discretization of the semidiscrete 4-field principle

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(*_{\sigma^{-1}} j - e \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(*_{\mu^{-1}} b - h \right) \right\|^2 \right) \quad \text{subject to} \quad de = -\gamma \left(b - \overline{b} \right) \quad \text{and} \quad dh = j$$

uses mimetic approximations for both the primal and the dual variables:

$$\Lambda^{1}(d,K) \times \Lambda^{2}(d,K) \Leftarrow \left(e_{h}^{1},b_{h}^{2}\right) \qquad \left((e,b);(h,j)\right) \qquad \left(h_{h}^{1},j_{h}^{2}\right) \Rightarrow \Lambda^{1}(d,K) \times \Lambda^{2}(d,K)$$

and **reduces to a mimetic least-squares**. However, we can apply mimetic discretization to just one of the two pairs of variables, either the primal or the dual:

$$\Lambda^{1}(d,K) \times \Lambda^{2}(d,K) \Leftarrow \left(e_{h}^{1},b_{h}^{2}\right) \qquad (e,b) \qquad \left(e_{h}^{2},b_{h}^{1}\right) \Rightarrow \Lambda^{2}(d,K) \times \Lambda^{1}(d,K)$$

$$\Lambda^{2}(d,K) \times \Lambda^{1}(d,K) \Leftarrow \left(h_{h}^{2},j_{h}^{1}\right) \qquad (h,j) \qquad \left(h_{h}^{1},j_{h}^{2}\right) \Rightarrow \Lambda^{1}(d,K) \times \Lambda^{2}(d,K)$$

A primal mimetic method

A dual mimetic method

The primal mimetic method

We start from the primal mimetic discrete 4-field principle

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} j_h^1 - e_h^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(\mu^{-1} b_h^2 - h_h^2 \right) \right\|^2 \right) \quad \text{subject to} \quad de_h^1 = -\gamma \left(b_h^2 - \overline{b}_h^2 \right) \quad \text{and} \quad d^* h_h^2 = j_h^1$$

Clearly, the minimum is achieved when $j_h^1 = \sigma e_h^1$ and $h_h^2 = \mu^{-1} b_h^2$. Instead of **eliminating** the constraints now we **eliminate** the functional and obtain the discrete system

$$de_h^1 = -\gamma (b_h^2 - \overline{b}_h^2)$$
 and $d^* \mu^{-1} b_h^2 = \sigma e_h^1$

Using that $\left(d^*h_h^2, \hat{e}_h^1\right) = \left(h_h^2, d\hat{e}_h^1\right) + \left\langle h_t, \hat{e}_h^1 \right\rangle_{\Gamma_2} \ \forall \ \hat{e}_h^1 \in \Lambda^1(d, K)$ gives the **mixed problem**

$$de_h^1 = -\gamma \left(b_h^2 - \overline{b}_h^2\right) \quad \text{and} \quad \left(\mu^{-1}b_h^2, d\,\hat{e}_h^1\right) + \left\langle h_t, \hat{e}_h^1 \right\rangle_{\Gamma_1} = \left(\sigma e_h^1, \hat{e}_h^1\right) \quad \forall \,\, \hat{e}_h^1 \in \Lambda^1(d, K)$$

The range variable can be eliminated to obtain a Rayleigh-Ritz type equation

$$\gamma(\sigma e_h^1, \hat{e}_h^1) + (\mu^{-1} d e_h^1, d \hat{e}_h^1) = \gamma \langle h_t, \hat{e}_h^1 \rangle_{\Gamma_1} + \gamma (\mu^{-1} \overline{b}_h^2, d \hat{e}_h^1) \qquad \forall \hat{e}_h^1 \in \Lambda^1(d, K)$$

It is a fully discrete version of the equivalent, second order eddy current equation

$$\sigma \dot{\mathbf{E}} + \nabla \times \mu^{-1} \nabla \times \mathbf{E} = 0$$

The three methods: summary

Fully mimetic

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} j_h^2 - e_h^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(\mu^{-1} b_h^2 - h_h^1 \right) \right\|^2 \right) \quad \text{subject to} \quad de_h^1 = -\gamma \left(b_h^2 - \overline{b}_h^2 \right) \quad \text{and} \quad dh_h^1 = j_h^2 \\ \min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} dh_h^1 - e_h^1 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left((\mu \gamma)^{-1} de_h^1 + h_h^1 - \mu^{-1} \overline{b}_h^2 \right) \right\|^2 \right)$$

Primal mimetic

$$\begin{split} \min \frac{1}{2} \Big(\Big\| \sqrt{\sigma} \big(\sigma^{-1} j_h^1 - e_h^1 \big) \Big\|^2 + \Big\| \sqrt{\mu \gamma} \big(\mu^{-1} b_h^2 - h_h^2 \big) \Big\|^2 \Big) \quad \text{subject to} \quad de_h^1 &= -\gamma \big(b_h^2 - \overline{b}_h^2 \big) \quad \text{and} \quad d^* h_h^2 = j_h^1 \\ de_h^1 &= -\gamma \big(b_h^2 - \overline{b}_h^2 \big) \quad \text{and} \quad \big(\mu^{-1} b_h^2, d\hat{e}_h^1 \big) + \left\langle h_t, \hat{e}_h^1 \right\rangle_{\Gamma_1} = \big(\sigma e_h^1, \hat{e}_h^1 \big) \quad \forall \; \hat{e}_h^1 \in \Lambda^1(d, K) \\ \gamma \big(\sigma e_h^1, \hat{e}_h^1 \big) + \big(\mu^{-1} de_h^1, d\hat{e}_h^1 \big) = \gamma \left\langle h_t, \hat{e}_h^1 \right\rangle_{\Gamma_1} + \gamma \big(\mu^{-1} \overline{b}_h^2, d\hat{e}_h^1 \big) \quad \forall \; \hat{e}_h^1 \in \Lambda^1(d, K) \\ \sigma \dot{\mathbf{E}} + \nabla \times \mu^{-1} \nabla \times \mathbf{E} = 0 \end{split}$$

Dual mimetic

$$\min \frac{1}{2} \left(\left\| \sqrt{\sigma} \left(\sigma^{-1} j_h^2 - e_h^2 \right) \right\|^2 + \left\| \sqrt{\mu \gamma} \left(\mu^{-1} b_h^1 - h_h^1 \right) \right\|^2 \right) \quad \text{subject to} \quad d^* e_h^2 = -\gamma \left(b_h^1 - \overline{b}_h^1 \right) \quad \text{and} \quad dh_h^1 = j_h^2$$

$$dh_h^1 = j_h^2 \quad \text{and} \quad \left(\sigma^{-1} j_h^2, d\hat{h}_h^1 \right) + \left\langle e_t, \hat{h}_h^1 \right\rangle_{\Gamma_2} = -\gamma \left(\mu h_h^1 + \overline{b}_h^1, \hat{h}_h^1 \right) \quad \forall \; \hat{h}_h^1 \in \Lambda^1(d, K)$$

$$\gamma \left(\mu h_h^1, \hat{h}_h^1 \right) + \left(\sigma^{-1} dh_h^1, d \; \hat{h}_h^1 \right) = -\left\langle e_t, \hat{h}_h^1 \right\rangle_{\Gamma_2} + \gamma \left(\overline{b}_h^1, \hat{h}_h^1 \right) \quad \forall \; \hat{h}_h^1 \in \Lambda^1(d, K)$$

$$\mu \dot{\mathbf{H}} + \nabla \times \sigma^{-1} \nabla \times \mathbf{H} = 0$$

Mimetic LS = Primal + Dual Mimetic

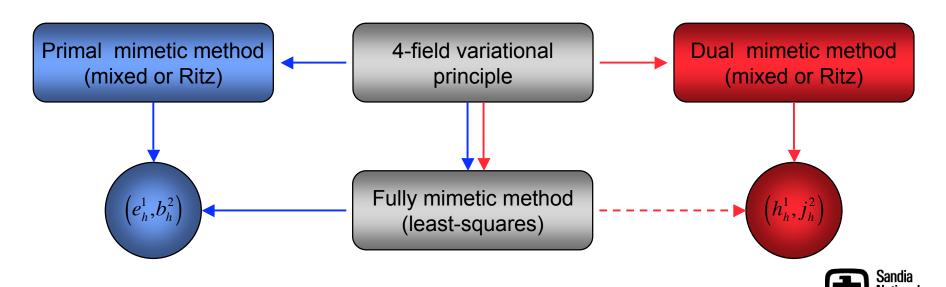
Theorem

Let (e_h^1, b_h^2) , (h_h^1, j_h^2) be the mimetic **least-squares** solution. Then (e_h^1, b_h^2) is the solution of the **primal** mimetic method

If b(x,0)=0, or we solve in frequency domain, we also have that

 $\left(h_h^1,j_h^2\right)$ is the solution of the dual mimetic method

This means, mimetic LS is equivalent to simultaneous solution of the primal and dual methods



Proof

The first order necessary condition for the least-squares principle is

$$\left(\sigma^{-1/2}dh_{h}^{1} - \sigma^{1/2}e_{h}^{1}, \sigma^{-1/2}d\hat{h}_{h}^{1} - \sigma^{1/2}\hat{e}_{h}^{1}\right) + \left((\mu\gamma)^{-1/2}de_{h}^{1} + (\mu\gamma)^{1/2}h_{h}^{1}, (\mu\gamma)^{-1/2}d\hat{e}_{h}^{1} + (\mu\gamma)^{1/2}\hat{h}_{h}^{1}\right) \\
= \left(\mu^{-1}(\mu\gamma)^{1/2}\overline{b}_{h}^{2}, (\mu\gamma)^{-1/2}d\hat{e}_{h}^{1} + (\mu\gamma)^{1/2}\hat{h}_{h}^{1}\right)$$

Expand each term

$$\left(\sigma^{-1/2}dh_{h}^{1} - \sigma^{1/2}e_{h}^{1}, \sigma^{-1/2}d\hat{h}_{h}^{1} - \sigma^{1/2}\hat{e}_{h}^{1}\right) = \left(\sigma e_{h}^{1}, \hat{e}_{h}^{1}\right) + \left(\sigma^{-1}dh_{h}^{1}, d\hat{h}_{h}^{1}\right) - \left(dh_{h}^{1}, \hat{e}_{h}^{1}\right) - \left(e_{h}^{1}, d\hat{h}_{h}^{1}\right)$$

$$\left((\mu\gamma)^{-1/2}de_{h}^{1} + (\mu\gamma)^{1/2}h_{h}^{1}, (\mu\gamma)^{-1/2}d\hat{e}_{h}^{1} + (\mu\gamma)^{1/2}\hat{h}_{h}^{1}\right) = \gamma\left(\mu h_{h}^{1}, \hat{h}_{h}^{1}\right) + \gamma^{-1}\left(\mu^{-1}de_{h}^{1}, d\hat{e}_{h}^{1}\right) + \left(de_{h}^{1}, \hat{h}_{h}^{1}\right) + \left(h_{h}^{1}, d\hat{e}_{h}^{1}\right)$$

The least-squares optimality system uncouples into two independent equations

$$\gamma\left(\sigma e_{h}^{1},\hat{e}_{h}^{1}\right)+\left(\mu^{-1}de_{h}^{1},d\hat{e}_{h}^{1}\right)=\gamma\left\langle h_{t},\hat{e}_{h}^{1}\right\rangle_{\Gamma_{2}}+\gamma\left(\mu^{-1}\overline{b}_{h}^{2},d\hat{e}_{h}^{1}\right)\quad\forall\hat{e}_{h}^{1}\in\Lambda^{1}(d,K)$$

$$\gamma\left(\mu h_{h}^{1},\hat{h}_{h}^{1}\right)+\left(\sigma^{-1}dh_{h}^{1},d\hat{h}_{h}^{1}\right)=-\left\langle e_{t},\hat{h}_{h}^{1}\right\rangle_{\Gamma_{1}}+\frac{\gamma\left(\overline{b}_{h}^{2},\hat{h}_{h}^{1}\right)}{\gamma\left(\overline{b}_{h}^{2},\hat{h}_{h}^{1}\right)}\quad\forall\hat{h}_{h}^{1}\in\Lambda^{1}(d,K)$$
Primal mimetic

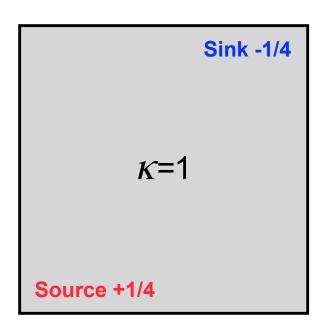
If b(x,0)=0, or in frequency domain, then the 2nd LS equation is identical to

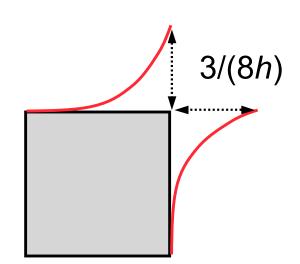
$$\gamma\left(\mu h_h^1, \hat{h}_h^1\right) + \left(\sigma^{-1}dh_h^1, d\hat{h}_h^1\right) = -\left\langle e_t, \hat{h}_h^1 \right\rangle_{\Gamma 1} + \gamma\left(\overline{b}_h^1, \hat{h}_h^1\right) \qquad \forall \hat{h}_h^1 \in \Lambda^1(d, K) \qquad \qquad \text{Dual mimetic}$$

Part II
(the fun part)

Diffusion: The 5 Spot Problem

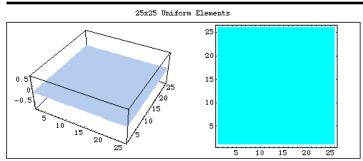
From: T. Hughes, A. Masud and J. Wan, A stabilized mixed DG method for Darcy flow





- > Problem is driven by a Neumann boundary condition (normal flux)
- ➤ Source/Sink is approximated by an equivalent distribution of the normal flux
- > Solved as a time-dependent problem (heat equation) using Implicit Euler
- ➤ Grid has 625 uniform quad elements

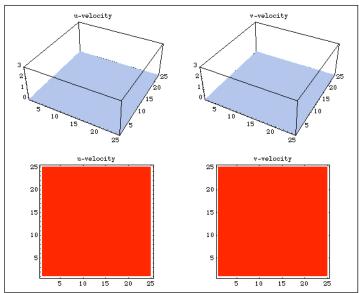
No Source Term



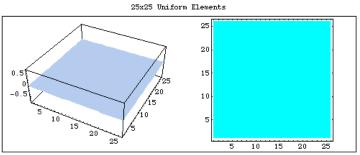
Mimetic LS Pressure dt=0.01, nt=100

mimetic

25x25 Uniform Elements



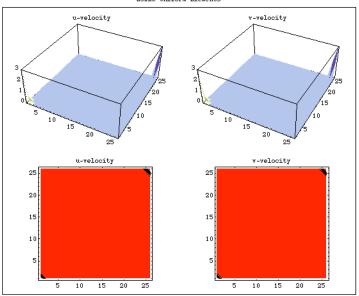
Mimetic LS Velocity. dt=0.01, nt=100



Q1-Q1 LS Pressure dt=0.01, nt=100

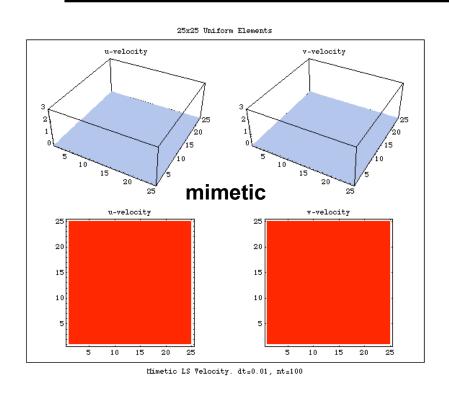
nodal

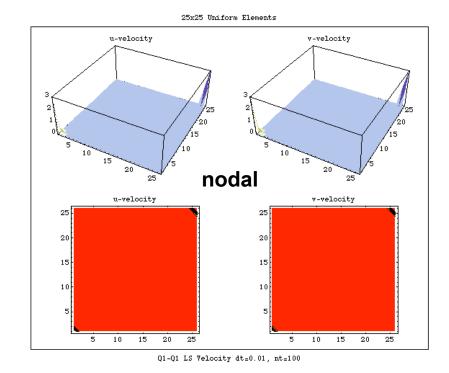
25x25 Uniform Elements



Q1-Q1 LS Velocity $\mathtt{dt}_{=}0.01\text{, }\mathtt{nt}_{=}100$

Oscillatory Source

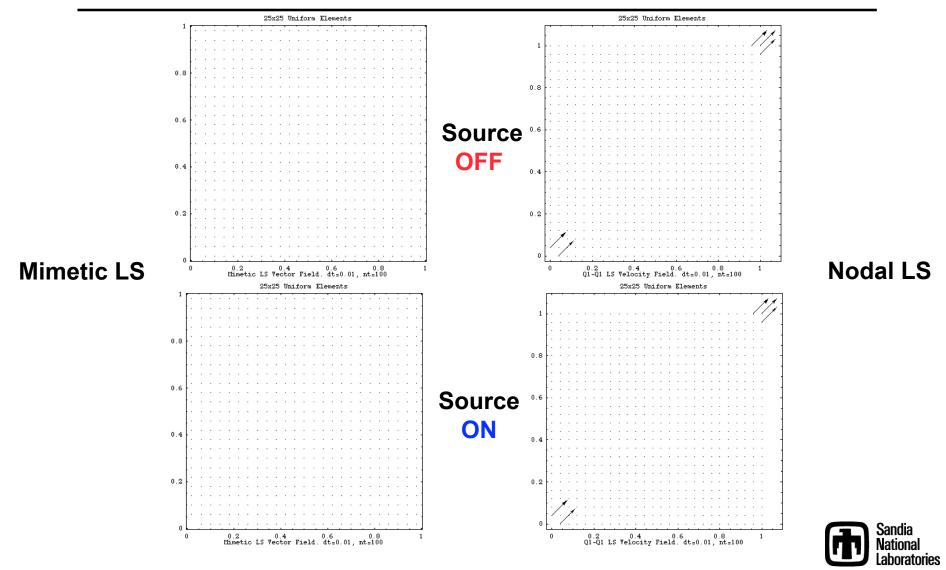




 $f = n\cos(\pi(n-1)x)\cos(\pi(n-1)y) \approx \frac{1}{\pi}\sqrt{\frac{\lambda}{2}}\varphi_{n,n}; \quad n = 25$

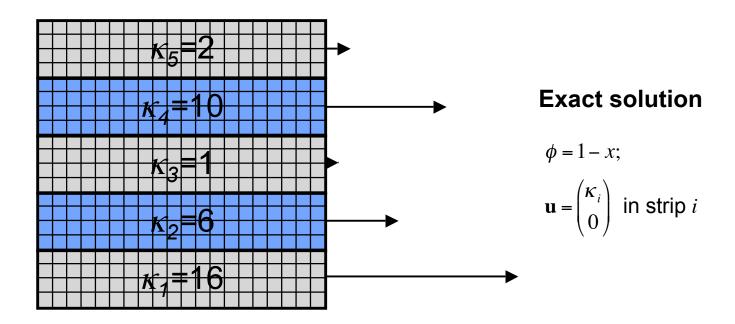
added perturbation $\approx \frac{1}{2\pi^2 n} |\varphi_{n,n}| \le 0.002$

Vector Field Comparison



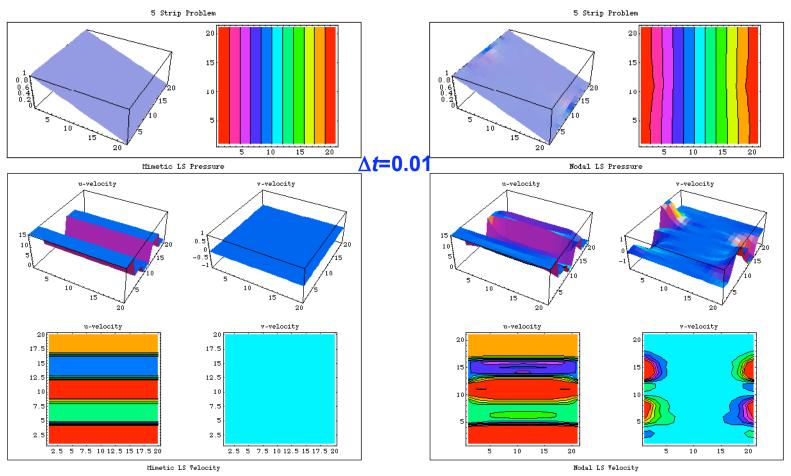
Diffusion: The 5 Strip Problem

From: T. Hughes, A. Masud and J. Wan, A stabilized mixed DG method for Darcy flow



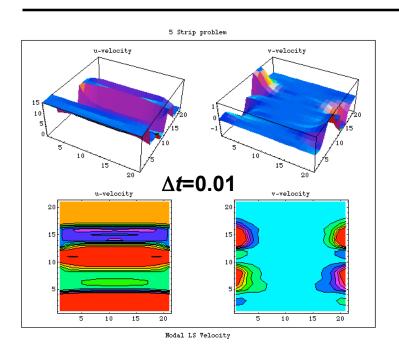
- Problem is driven by Neumann boundary condition (normal flux)
- ➤ Solved as a time-dependent problem (heat equation) using Implicit Euler
- > Grid has 400 uniform elements aligned with the interfaces between the strips

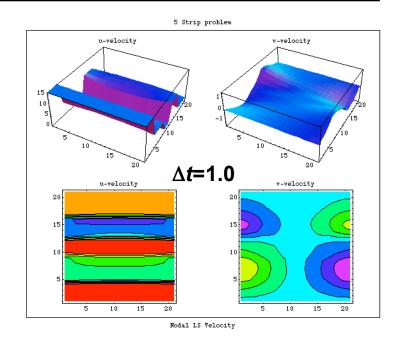
Mimetic vs. Nodal Least Squares



	L2 Flux	H(div) Flux	L2 Scalar	H1 Scalar
Mimetic LS	0.1670E-08	0.9839E-13	0.4553E-11	0.3041E-13
Nodal LS	0.1759E+01	0.7470E+02	0.8926E-02	0.1425E+00

Nodal LS at different time steps



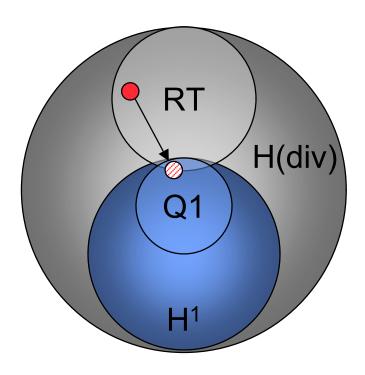


Nodal LS Solution worsens when Δt is reduced

	L2 Flux	H(div) Flux	L2 Scalar	H1 Scalar
Δ <i>t</i> =1.0	0.1925E+01	0.7206E+02	0.8892E-02	0.1423E+00
∆ <i>t</i> =0.01	0.1759E+01	0.7470E+02	0.8926E-02	0.1425E+00

Why Nodal LS fails?

Solution of the 5 strip problem belongs to the discrete space: recovered by the mimetic LS



Least-Squares solution is a projection onto the discrete space

gives the best possible approximation out of that space with respect to the energy norm

Nodal Least-Squares: gives the best energy norm approximation of that solution out of Q1

Conclusions (I)

Mimetic Least-Squares (MLS) for 2nd order PDEs result from **weakly enforced** material laws and provide **realization** of a discrete Hodge * operator

MLS offer important advantages:

- ✓ discrete spaces not subject to a joint inf-sup: can be selected independently!
- ✓ MLS inherit the best computational properties of primal and dual mimetic:
 - **Primal** → Optimal accuracy in the **primal** variable
 - **Dual** → Optimal accuracy in the **dual** variable
- ✓ MLS are locally conservative
- ✓ MLS lead to symmetric and positive definite algebraic systems

Mimetic least-squares are an attractive alternative to mixed and finite volume schemes

Conclusions (II)

There's no free lunch: least-squares are not **immune** to compatibility:

LS allow to circumvent compatibility between the spaces

LS do not allow to circumvent compatibility of spaces

The latter is governed by **PDE structure** and must be respected!

References

- 1. P. Bochev and M. Hyman, *Principles of mimetic discretiations*, **Proc. IMA Workshop on Compatible discretizations**, Springer Verlag, To appear 2006.
- 2. P. Bochev, A discourse on variational and geometric aspects of stability of discretizations. In: 33rd Computational Fluid Dynamics Lecture Series, VKI LS 2003, Von Karman Institute for Fluid Dynamics
- 3. P. Bochev and M. Gunzburger, Locally conservative least-squares methods for the Darcy flow, CMAME, submitted
- 4. P. Bochev and P. Gunzburger, *Compatible discretizations of second order elliptic problems*, **Notices of the Steklov Institute**, St. Petersburgh branch, 2005
- 5. P. Bochev and M. Gunzburger, On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles. **SIAM J. Num. Anal.**, Vol. 43/1, pp. 340-362, 2005

Related work

- 1. I. Perugia, A field-based mixed formulation for the 2D magnetostatics problem, **SINUM** 34, 1997
- 2. F. Brezzi, et al, A novel field-based mixed formulation of magnetostatics IEEE MAG-32, 1996
- 3. A. Bossavit, A rationale for edge elements in 3D fields computations, IEEE MAG-24, 1988

Magnetic Diffusion: Z-Pinch Model

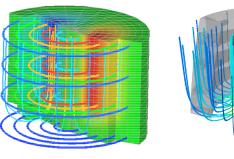
Scales:

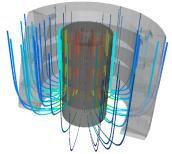
PULSE DURATION 10⁻⁹ sec
TIME SCALE 10⁻³ sec
CURRENT POWER 20x10⁶ A

X-RAY POWER 10¹² W

X-RAY ENERGY 1.9x10⁶ J

C. Garasi, A. Robinson

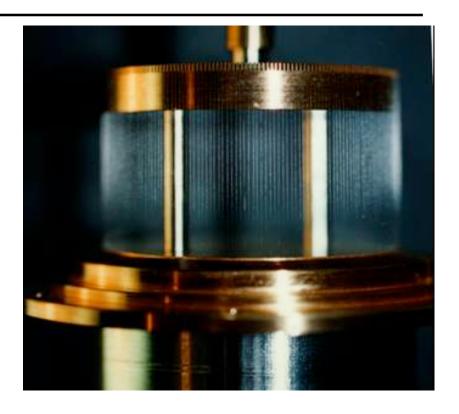




MHD MODEL

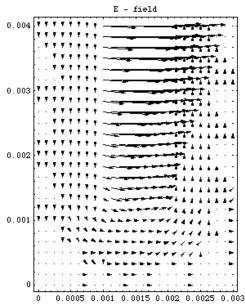
=

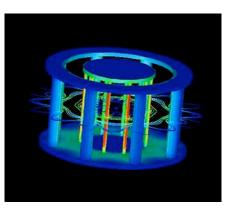
Hydrodynamics + Magnetic Diffusion

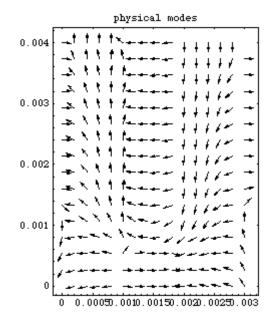


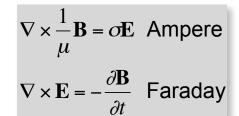
Z-machine: Electric currents are used to produce an ionized gas by vaporizing a spool-of-thread sized array of 100-400 wires of diameter ≈ 10µm

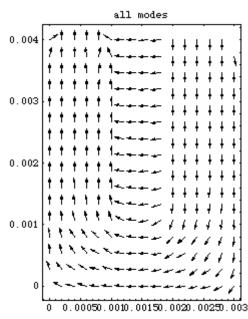
Mimetic LS vs. Nodal LS: E-field











Gap modeled as a heterogeneous conductor

Mimetic LS vs. Nodal LS: B-field

